Paper Reference(s) 4PH1/2P Pearson Edexcel International GCSE (9–1)

Physics Paper: 2P

**Formulae Booklet** 

## DO NOT RETURN THIS FORMULAE BOOKLET WITH THE QUESTION PAPER.



X67161A

You may find the following formulae useful.

energy transferred = current × voltage × time E = I × V × t

frequency = 
$$\frac{1}{\text{time period}}$$
f =  $\frac{1}{T}$ power =  $\frac{\text{work done}}{\text{time taken}}$ P =  $\frac{W}{t}$ power =  $\frac{\text{energy transferred}}{\text{time taken}}$ P =  $\frac{W}{t}$ orbital speed =  $\frac{2\pi \times \text{orbital radius}}{\text{time period}}$ v =  $\frac{2 \times \pi \times r}{T}$ (final speed)<sup>2</sup> = (initial speed)<sup>2</sup> + (2 \times acceleration \times distance moved)v<sup>2</sup> = u<sup>2</sup> + (2 \times a \times s)pressure × volume = constantp\_1 × V\_1 = p\_2 × V\_2 $\frac{\text{pressure}}{\text{temperature}} = \text{constant}$  $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ 

(continued on the next page)

**Turn over** 

force = 
$$\frac{\text{change in momentum}}{\text{time taken}}$$
 F =  $\frac{(\text{mv} - \text{mu})}{\text{t}}$ 

change of wavelength<br/>wavelength=velocity of a galaxy<br/>speed of light

$$\frac{\lambda - \lambda_0}{\lambda_0} = \frac{\Delta \lambda}{\lambda_0} = \frac{\mathbf{v}}{\mathbf{c}}$$

change in thermal energy = mass × specific heat capacity × change in temperature

 $\Delta \mathbf{Q} = \mathbf{m} \times \mathbf{c} \times \Delta \mathbf{T}$ 

Where necessary, assume the acceleration of free fall,  $g = 10 \text{ m/s}^2$ .